也没有人类告诉它猫应该长成什么模样,涵盖机

来源:http://www.fengfeiyuan.com 作者:新闻资讯 人气:127 发布时间:2019-10-09
摘要:如果说信息技术是第三次工业革命的核心,那么人工智能所代表的智能则是下一次工业革命的核心力量。 “你必须明白,这些人中的大部分还没有准备好去拔掉他们身上的控制物。他们

如果说信息技术是第三次工业革命的核心,那么人工智能所代表的智能则是下一次工业革命的核心力量。

图片 1

图片 2“你必须明白,这些人中的大部分还没有准备好去拔掉他们身上的控制物。他们中的很多人都如此习惯于、并且无望地依赖于这个控制系统,甚至会反过来维护它!”—《黑客帝国》

2016年,谷歌阿尔法围棋以4:1战胜围棋世界冠军、职业九段棋手李世石,不仅让深度学习为人们所知,而且掀起了人工智能的"大众热"。此后,人工智能越来越热,从机器人开发、语音识别、图像识别、自然语言处理到专家系统等不断推陈出新。

“世界的尽头,是雄狮落泪的地方,是月亮升起的地方,是美梦诞生的地方。”——大卫《人工智能》

阿尔法狗与人类顶尖棋手的人机大战注定成为人工智能(Artifical Intelligence, AI)的里程碑事件,当AI变得越来越复杂,越来越聪明,以至于在多个领域全面超越人类的时候,那时的AI会是提高人类生产力和生活质量的好助手?抑或是彻底控制奴役人类的天网?现在还难以下结论,但可以肯定的是接下来数十年里AI对人类生活造成的冲击将是巨大的,本文就来说说阿尔法狗彻底战胜人类到底意味着什么。

图片 3

引言:大数据时代,大数据驱动的深度智能生逢其时,就像哈勃望远镜一样,可以推进人类文明的进步,从战胜人类顶尖棋手、帮助发现引力波到治疗癌症、金融交易、安全防控、气候模拟等。可以预见的是,随着深度学习技术体系的高速发展和这一波“猫”“狗”AI工程的野蛮生长,人类正在大踏步迈入大数据智能时代。以深度学习为代表的深度智能为什么会成为AI的热点?为什么深度学习会重塑机器学习和人工智能?为什么被寄希望为通往通用人工智能的关键技术?为什么深度学习能一鸣惊人?让机器大步跨入感知智能时代?深度学习又能否在未来机器攻破认知堡垒的过程中担当大任?当然对于这些重大进步,也有质疑的声音,并不是每个人都认为深度学习可以实现与人类智能相媲美的AI,一些批评者认为,深度学习和人工智能研究忽视了大脑本身的生物学、神经学知识,偏向于黑箱式的强力计算,理论基础薄弱等等。 上述种种,可谓仁者见仁智者见智,本文就来探秘深度学习技术、趋势和人工智能发展过程中的各种关键问题…

1.“猫”和“狗”的野蛮生长

同时,人工智能技术越来越多地融入到我们的生活中,出现了智能音箱、智能助理、智能机器人等。

♦人工神经网络的早期发展

2012年,GoogleX的“猫”AI面世,纽约时报曾以《需要多少计算机才能正确的识别猫?16000台》为标题报道吴恩达领导的GoogleX实验室是如何训练机器认识猫的,最为特别的是,谷歌的猫AI不需要任何外界信息的帮助,它就能从数千万张图片中找出那些有猫的图片。传统的人脸识别是由程序员预先将整套系统编程实现,告诉计算机人脸应该是怎样的,电脑才能对包含同类信息的图片作出识别,而谷歌AI却是自己发现了‘猫’的概念,之前没有人告诉过它‘猫’是什么,也没有人类告诉它猫应该长成什么模样。

根据应用领域的不同,人工智能研究的技术也不尽相同,目前以机器学习、计算机视觉等成为热门的AI技术方向。但是,平常接触中,很多人分不清人工智能、机器学习、深度学习和强化学习的关系。

人工智能早期的发展进展缓慢,结果令人失望。对于许多问题,早期AI研究人员认为机器必须有大量的知识才能“聪明”,希望通过知识的表示和符号逻辑的推理实现机器智能,于是提出了专家系统方法,比如通过计算机程序实现领域专家提供的经验规则来解决医疗诊断等问题,根据病人的数据去匹配一系列规则,如果这种疾病没有得到正确的诊断,那么专家会增加额外的规则来缩小诊断范围。IBM的沃森人工智能就是一个经典AI系统的现代版本,沃森的核心技术是基于大量现实问题来构建复杂的知识库,它需要领域专家的密切参与来提供大量数据并评估其性能。这种经典AI方法虽然能解决了一些明确定义的问题,但由于自身无法进行自我学习和进化,谈不上真正的机器智能,离人类的智能还很远。

2009年,斯坦福大学华人教授李飞飞创立了全球最大的图像识别数据库-ImageNet,收集了大量带有标注信息的图片数据供计算机视觉模型进行训练,拥有1500万张标注过的高清图片,总共22000类。2012,Hinton的学生Alex依靠8层深的卷积神经网络一举获得了基于ImageNet的ILSVRC比赛冠军,瞬间点燃了卷积神经网络研究的热潮,后来每年一度基于ImageNet数据库的深度网络对象识别比赛牵动着各大公司的心弦,2014年,Google深度网络在ImageNet ILSVRC的比赛中取得第一名,识别错误率为6.67%,2015年,微软研究院的Kaiming-He等4名华人提出的152层深度残差网络获得冠军,识别错误率仅为3.57%,超越人类的识别能力。2016年,李飞飞团队在教会了计算机去识别图像的基础上,让计算机像一幼儿一样学会看图说话,并会用“句子”进行交流,例如不止是说某张图里有只“猫”,还可以说“这只猫是坐在床上的”。

简单说,人工智能范围最大,涵盖机器学习、深度学习和强化学习。如果把人工智能比喻成孩子大脑,那么机器学习是让孩子去掌握认知能力的过程,而深度学习是这种过程中很有效率的一种教学体系。

面对经典AI方法的缺陷,一些早期AI研究人员也在探讨人工神经元模型的思想,结合反向传播方法,构建了人工神经网络(ANNs),尽管当时还对真实神经元的工作方式知之甚少。而且神经网络的设计与真正的神经元几乎没有共同之处,设计重点也从生物模拟转向了从数据中学习的思路。所以,人工神经网络比经典AI方法更大的优势在于它能从数据中学习,不需要专家知识来提供规则。直到现在,人工神经网络仍然是机器学习关键技术之一。虽然传统的神经网络系统可以解决许多使用经典AI无法解决的问题,但是它们仍有较大的局限。例如,在数据不足的情况下,学习效果很有限,另外不能处理数据动态变化的问题,而且在当时即使有大量数据,也存在计算能力不足的瓶颈。这也是为什么神经网络在当时流行一段,后来又衰落下去的原因。当然从早期的研究来看,神经网络已经展示出了强大的学习潜力,用辛顿(Hinton,深度学习的创始人,深度学习四大金刚之一,如图1)的话来讲:神经网络提出了机器根据经验和数据进行学习的宏伟远景,就像幼儿自我学习进化一样,而不是通过人类量身定制的规则和无休止的知识灌输和监督指导。传统的经典AI方法大部分都受到了逻辑的启发,但是逻辑是人长大后才做的事情,三岁小孩学习从来不靠逻辑,很多成人做事也不讲逻辑。因此在我看来,神经网络是让我们了解智力如何运作的一个比逻辑方法更好的范例。

图片 4图1 imagenet图像识别数据库

图片 5

图片 6

2016年,英国伦敦的DeepMind(2014年被谷歌收购)五年磨一剑,“狗”AI横空出世,与李世石人机大战4:1获胜。DeepMind的创始人杰米斯.哈萨比斯(Demis Hassabis)志向远大,其远景目标直指通用人工智能。虽然围棋艺术很主观,但AlphaGo却把围棋下得很客观,阿尔法狗设计了在每一步都会分析有什么影响,用哈萨比斯的话讲,AlphaGo已经可以模仿人的直觉,而且具备创造力,通过组合已有知识或独特想法的能力,不过这些能力目前仅仅局限于围棋。李开复关于阿尔法狗的评价很高:“AlphaGo是一套设计精密的卓越工程,达到了历史性的业界里程碑,这套工程不但有世界顶级的机器学习技术,也有非常高效的代码,并且充分发挥了谷歌在全球最宏伟的计算资源”。当然也有IBM的工程师匿名评价了他家的“沃森”和“狗” 的智力,声称沃森和AlphaGo的智力对比,基本上是狗和人的对比,Watson虽是人名,但是在阿法狗的智商面前,他才是真的狗。由此看来,大家应该知道阿尔法狗的技术有多牛了。从某种程度上讲,狗用的不是谷歌工程师写的一般意义上的算法,而是用的一套类人的学习框架(强化学习+深度学习),反复学习棋谱,自己和自己对战,类似于人类的学习方式,强化学习让狗拥有了初步的自我学习和博弈思考能力。

有人表示,人工智能是目的,是结果;深度学习、机器学习是方法,是工具。

图1 深度学习四大金刚

图片 7图2 柯洁大战阿尔法狗

百度百科如此阐释人工智能(Artificial Intelligence),英文缩写为AI。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。

♦这一波“猫”、“狗”AI的野蛮生长

当今世界,不少领域有着巨量信息和超级复杂的系统,例如电信、医疗、金融、天文、气候和经济领域,即使是领域内的专家也无法应对海量数据和系统的复杂性。同时,数以亿计的移动传感器、智能手机和互联网、无联网、企业系统还在源源不断地喂养数字地球,全球互联网和企业系统海量数据的爆炸式增长,给基于深度学习的人工智能插上了腾飞的翅膀。

而机器学习是人工智能的一种途径或子集,它强调学习而不是计算机程序。一台机器使用复杂的算法来分析大量的数据,识别数据中的模式,并做出一个预测——不需要人在机器的软件中编写特定的指令。

早期的神经网络研究尽管取得了值得称道的进展,但前些年为什么没有成功,这就是因为我前文所讲的大数据智能三要素还不具备。一是由于当时的计算能力瓶颈,使得基于神经网络的机器学习黯然失色,这种情况持续了几十年,直到GPU加速的问世;二是缺失的标注数据,尽管10年前互联网就开始充斥着大量的数据,却没有被标注,而被标注的海量数据才是神经网络最需要的燃料。这也是斯坦福大学教授李飞飞最关注的东西,她致力于数据驱动的机器学习。但从2006年,深度智能开始了崛起之路。

我在前文《深度学习的深度价值是什么》曾提过,深度学习的核心技术是几十年前就提出的人工神经网络,如果将人工神经网络比为火箭发动机一代,那么深度学习就是火箭发动机二代,升级了训练方式(Hinton大神首创),加装了高性能计算配置(做游戏显卡起家的Nvidia居功至伟),最关键的是有了互联网和企业级巨头们的海量大数据燃料。为什么神经网络换马甲为深度学习之后,能获得突破性进展(图像、语音、翻译等多个领域接近或完败人类),上述三个方面的天时地利人和发挥了关键作用。另外我们都知道,伟大的东西往往很简单,好比爱因斯坦的EMC方程,深度学习也是一种朴素、简单、优美而有效的方法:像小孩搭积木一样简单地构建网络结构;性能不够,加层来凑的朴素思想,这种标准化、易用性的处理架构,极大降低了机器学习的难度,当然最关键还是效果,就某些应用领域而言,深度学习在大数据环境下的学习能力完败传统方法。 而阿尔法狗彻底战胜人类顶尖高手,就是深度学习技术应用的极致体现。大数据时代,AI生逢其时,就像哈勃望远镜一样,可以推进人类文明的进步,从治疗癌症、发现引力波、金融交易、安全防控到气候模拟等。可以预见的是,随着深度学习技术和这一波“猫”“狗”AI工程的野蛮生长,人类正在大踏步迈入人工智能时代。

机器学习之父Tom Mitchel如此定义机器学习:

2006年,Hinton提出了深度信念网络DBN,通过无监督预训练和有监督训练微调的方法在一定程度上解决了深层网络梯度消失的问题,由于没有特别有效的实验验证,该论文在当时并没有引起重视。

2.阿尔法狗vs.人工智能阿波罗计划

每个机器学习都可以被精准地定义为:1.任务;2.训练过程;3.模型表现P。而学习过程则可以被拆解为"为了实现任务T",我们通过训练E,逐步提高表现P的一个过程。

2009年,斯坦福大学华人教授李飞飞发布了全球最大的图像识别数据库ImageNet,收集了大量带有标注信息的图片数据供计算机视觉模型进行训练,拥有1500万张标注过的高清图片,第二年开始她每年举办一次计算机视觉比赛。

2016年第一次人机大战开始之前,笔者当时做了一个简要的论述:“在我看来,本次人机大战,机器智能战胜高智商人类的可能性极大!在不远的将来,人类有限的感知计算在拥有超级强大计算资源并结合智能算法的机器面前将不堪一击。同时,这次人机大战也是对大数据深度学习技术的一次实战检验。为什么这样讲,虽说博弈搜索技术已在国际象棋的对弈中取得了巨大的成功,但却难以适用于围棋,因为围棋棋盘横竖各有19条线,共有361个落子点,双方交替落子,这意味着围棋总共可能有10^171(1后面有171个零)种可能性,这个数字到底有多大,我们宇宙中的原子总数是10^80(1后面80个零,这个估算数据来源于网络,无法确认)。就是说穷尽整个宇宙的原子数也不能存下围棋的所有可能性 。另外,从搜索树的分枝数看,国际象棋约为35,如果只构造分析7步棋的博弈搜索树,则只需甄别35^7≈650*10^8种变化,这对每秒计算2亿步棋的“深蓝”计算机而言,想一步棋约需5分钟。而围棋的分枝数约为200,若也分析7步棋的变化,则要计算200^7个结果,想一步棋则需2年时间。”下面是国际象棋和围棋的计算复杂度比较示意图。

举个例子,让一个模型认识一张图片是猫还是狗。为了提高模型的准确度,我们不断给模型提供图片让其学习猫与狗的区别。在这个学习过程中,我们所得到的最终模型就是机器学习的产物,而训练过程就是学习过程。

2012年,可以称为深度学习元年,在这一年有几个里程碑事件:

图片 8图片 9图3 象棋和围棋计算复杂度示意图

图片 10

♦Hinton课题组首次参加ImageNet机器视觉比赛,构建的CNN网络AlexNet一鸣惊人夺得冠军,并且碾压传统机器学习方法的识别性能,从此深度学习声名鹊起,成为学术研究和企业应用研究的焦点。

从上面两种博弈的计算复杂度比较图可以看出,围棋变化的复杂度要比国际象棋高得多,对围棋进行全局博弈的穷举式搜索,就传统的计算机处理技术来讲显然是不可能实现的。所以说围棋的挑战被称为人工智能领域的“阿波罗计划”,宇宙原子数都不能穷尽的可能性,机器不可能穷举哪怕少部分比例的围棋走法,机器要下赢围棋没有什么套路可言,唯一的办法就是学会“学习”,自我学习,而不能靠死记硬背。那阿尔法狗为什么会在短短几年时间内就能进行学习,并超越人类顶尖棋手的智慧呢?下文就要来说说狗的核心技术-深度学习和强化学习。

而深度学习则是一种实现机器学习的技术,它适合处理大数据。深度学习使得机器学习能够实现众多应用,并拓展了人工智能的领域范畴。

♦微软首席研究员里克•拉希德(Rick Rashid)在会议上展示了基于深度学习的实时口译系统,把他的口语转化为英文,错误率为7%,再翻译成中文文本,然后深度学习系统用普通话说出翻译后的语言。

图片 11图4 人工智能的阿波罗计划

从安防监控、自动驾驶、语音识别到生命科学等等,深度学习以"摧枯拉朽之势"席卷行业。

♦GoogleX的“猫”AI面世,这个系统在当时引起了轰动,他们采用16000个CPU计算资源构建了一个具有10亿连接的深度神经网络,并让它在YouTube上浏览和寻找猫。这套基于深度学习的识别系统不需要任何人工特征信息的帮助,就能从数千万张图片中找出那些含有猫的图片。传统的人脸识别是由程序员预先将整套系统编程实现,告诉计算机人脸应该是怎样的,设计好图像的分割和识别规则,系统才能对包含同类信息的图片作出识别,而猫AI却是自己发现了‘猫’的概念,之前没有人告诉过它‘猫’是什么,也没有人类告诉它猫应该长成什么模样。

3.阿尔法狗的类脑学习方法

以语音识别为例,通过机器学习,语音识别能随着时间向用户学习,最后能达到95%的准确性。但是训练过程是密集的。

2015年,ImageNet竞赛,微软研究院的深度学习网络获得冠军,识别错误率仅为3.57%,超越一般人类的识别能力。

一般来讲,机器学习分为监督学习、无监督学习和半监督学习(自我学习和老师指导结合),而AlphaGo用到的强化学习技术就有点类似半监督学习。在笔者看来,阿尔法狗基于深度学习+强化学习+蒙特卡洛树决策的组合式学习方法可能已经站在了人类大脑学习的门口,为什么这样讲,我们来看看阿尔法狗的系统架构。AlphaGo不是一个预编程的围棋程序,而是采用了与人类学习类似的机制,用到的核心技术如下图(分析得十分详细,感谢微软亚洲研究院郑宇和张钧波两位作者)。

而神经网络处理数十亿个口语音频,将语音识别提高到接近100%的准确度,同时还能缩短训练时间。此外,语音识别还通过关键词和主题对原始音频进行分类,并识别发言者,这对音频监控具有广泛而深远的影响。

2016年,李飞飞团队在教会了计算机去识别图像的基础上,基于卷积神经网络CNN和长短时记忆网络LSTM的组合实现,让计算机能像一幼儿一样学会看图说话,并会用“句子”进行交流,例如不止是说某张图里有只“猫”,还可以说“这只猫是坐在床上的”。

图片 12图5 AlphaGo原理图 (作者,郑宇、张钧波,微软亚洲研究院)

图片 13

2016年3月,英国伦敦的DeepMind(2014年被谷歌收购)数年磨一剑,“阿尔法狗”AlphaGo横空出世,与李世石人机大战4:1获胜。

人类下棋的思维方式,一般是根据输入的局面,进行候选招法和形势判断,综合比较以后给出最终落子策略。AlphaGo的学习方法与此非常相似,从上面架构图分析可以看出,阿尔法狗的学习分为三个阶段进行:

除了深度学习,机器学习中还有非常重要的强化学习。

2017年5月,阿尔法狗战胜柯洁,在围棋领域彻底战胜人类,AlphaGo已经可以模仿人下棋的直觉,而且具备创造力,通过组合已有知识或独特想法的能力,不过这些能力目前仅仅局限于围棋。

基础学习阶段-通过对棋谱的深度学习完成策略网络的构建,直接使用人类高手的落子弈法,采用深度学习技术训练一种有监督学习型走棋策略网络。这个策略网络能对走子时的弈法快速采样,用来预测一个局面数据集中人类棋手的落子情况。AlphaGo的策略网络,就对应了人类“选点”决策过程,选点决策要基于我们历史的学习情况,老师的指导情况,来决定其掌握的基础博弈水平。这个过程在于快速的学习历史棋盘,获取较优的下棋选择,类似于我们的观察学习获得的第一反应,准确度不高所以我称之为基础学习。

过去十年,强化学习的大部分应用都在电子游戏方面。未来,在直升机特技飞行、经典游戏、投资管理、发电站控制、让机器人模仿人类行走等领域有着广泛的应用。

2017年10月,阿尔法狗的升级版AlphaGo Zero(阿尔法狗零或叫阿尔法狗元)抛弃对数百万盘人类历史棋谱的训练学习,一开始就不知道何谓人类棋谱,只是自由随意地在棋盘上下棋,按设定的围棋规则和目标,靠周伯通式的左右互博,学习能力大幅超越原版阿尔法狗,可谓是无人自学3天,胜过人类3000年。

提升强化阶段-通过自我对战强化学习来提高博弈水平,采用强化学习技术来优化先前的走棋策略网络,通过自我博弈的强化学习迭代结果,来提升前面的策略网络。此阶段是将该策略调校到赢取比赛的正确目标上,而非最大程度的预测准确性。强化学习对前一版策略网络用策略梯度学习来最大化该结果,通过和这个策略网络自我博弈,即与之前的“自己”不间断训练以提高下棋的水平,这个过程有点类似于人类的巩固学习和理解贯通阶段。

♦深度学习的“深度”价值

实时决策阶段-通过深度回归学习构建估值网络,用来预测自我博弈强化学习数据集里局面的预期结果,即预测那个策略网络的局面会成为赢家。结合蒙特卡洛树搜索压缩搜索空间,降低了搜索时间复杂度, MCTS决策有效结合了策略网络和估值网络,形成了完整的决策系统,利用强化学习对整个盘面的全局输赢概率进行判断,类似于人类的判断决策过程。

上述种种迹象表明,深度学习技术在加速AI发展进程的收敛。笔者认为深度学习不仅仅是神经网络那么简单,而是解码人类学习的一套宏大技术体系(从监督向无监督,从统计学习到强化、对抗、迁移、生成、判别、融合的终生学习等等…),深度神经网络不会像很多专家学者认为的那么不堪,什么黑箱,什么没有理论基础。Deep learning的横空出世必将使得未来的人工智能大放异彩,可以说现阶段基于大数据的深度学习已经让机器初步睁开了眼睛,能初步看图说话,能听会道,李飞飞教授所讲的当前AI已经具有4-5岁幼儿的能力,是很有道理的,深度智能下一步将会扔掉大数据,或自我创造大数据,或无监督来自我进化学习。当今世界,不少领域有着巨量信息和超级复杂的系统,例如电信、金融、天文、气候、医疗和经济领域,即使是领域内的专家也无法应对海量数据和系统的复杂性。同时,数以亿计的移动传感器、智能手机和互联网、无联网、企业系统还在源源不断地喂养数字地球,全球互联网和企业系统海量数据的爆炸式增长,给基于深度学习的人工智能插上了腾飞的翅膀。从AI的发展历程来比较,深度学习是一个阿波罗登月式的进步。Google的DeepMind通过将深度学习与强化学习相关技术的结合创造了AlphaGo,在围棋这个领域已经战胜人类的顶级棋手。这也是一个具有里程碑意义的AI成就。人工神经网络发展成为深度学习网络,通过利用强大计算资源和海量的训练数据,网络性能可以在某些问题的解决上逼近极限(如图2)。深度学习已成功解决了许多问题,如图像分类,皮肤病诊断,语言翻译,数据中心优化和分析基因、识别癌症,可以预见,未来能解决的重大问题将会越来越多。

上述三个阶段还分为线下和线上两个部分,线下学习类似于我们打基础,巩固复习阶段,在线学习是考试决策阶段。这三个阶段的核心关键词是模仿,而不是规则。这点很重要,基础学习阶段靠对历史棋盘的深度学习进行模仿,获得初始知识,强化学习自我对战也是模仿逐步形成自己的决策判断,这也是为什么谷歌的阿尔法狗会完胜IBM的沃森,因为人类与生俱来的行为不是基于规则而是基于模仿的,通过模仿建立起基本知识体系之后,才会出现规则。从这个角度看,谷歌号称十年内实现通用人工智能,不是没有可能,因为除了强化学习之外,还有迁移学习、对抗学习、认知学习…具有强大计算能力的机器可以把人类的学习方式虐个遍,总有会找到一条有效的模仿之路。

图片 14

4.阿尔法狗的深度学习架构,也许开启了机器智能的魔盒

图2 深度学习能力无上限?

深度学习的基本神经元模型,模拟了人脑的神经元轴突构建过程,为什么人工神经网络这个超级火箭模型几十年前就提出来了,而到现在才开始爆发出力量呢?因为受限于燃料和加速器,例如要模拟一亿个神经元。每个神经元有100万个连接,就是100万亿条计算路径,人脑有800亿个神经元,能达到人类一样计算能力的深度学习网络要能产生8万亿条计算路径。这在十年前都是无法想象的,几十年前更是没有大数据燃料,也没有超级计算加速器。而现在各大互联网巨头的服务器农场装备上了GPU的计算力,加上全球联网的大数据,所以深度学习得以爆发,这对传统机器学习技术的冲击也是巨大的,阿尔法狗的深度学习架构,也许开启了机器智能的魔盒,为什么这样讲,下面几点值得关注:

我在前文《深度学习的“深度”价值是什么?》曾提到,深度学习的核心技术是几十年前就提出的人工神经网络,如果将人工神经网络比为火箭发动机一代,那么深度学习就是火箭发动机二代,升级了训练方式(Hinton大神首创),加装了高性能计算配置(做游戏显卡起家的Nvidia居功至伟),最关键的是有了互联网和企业级巨头们的海量大数据燃料。为什么神经网络换马甲为深度学习之后,能获得突破性进展(图像、语音、翻译等多个领域接近或完败人类),上述三个方面的天时地利人和发挥了关键作用。另外我们都知道,伟大的东西往往很简单,好比爱因斯坦的EMC方程,深度学习也是一种朴素、简单、优美而有效的方法:像小孩搭积木一样简单地构建网络结构;性能不够,加层来凑的朴素思想,这种标准化、易用性的处理架构,极大降低了机器学习的难度,当然最关键还是效果,就某些应用领域而言,深度学习在大数据环境下的学习能力完败传统方法,当你的大数据燃料输入深度网络之后,你可以惊奇地等待并发现,它比计算机科学家几十年努力所构建的大部分机器学习算法效果都要好很多,这不得不让人刮目相看。 而阿尔法狗(AlphaGo)彻底战胜人类顶尖高手,更是深度智能应用的极致体现。

大数据条件下,传统机器学习的温室模型、脆弱的人工特征工程、单模态的计算能力,难以走出实验室进行大规模应用。大数据的智能学习需要满足样本自由化和特征工程自动化处理能力,深度学习之路就是在逐步解决这一问题。

♦机器如何智能:从感知到认知

阿尔法狗基于深度学习、强化学习和蒙特卡洛树决策的类脑学习架构,加上谷歌巨量的云计算和GPU资源,这种系统架构比以前的任何人工智能技术都靠谱,扩展空间巨大。早期关于动物学习的观点就是基于强化学习框架构建,每一次成功都会换来奖励,从而加强动物大脑中对这种奖励的正强化学习联系,而每一次失望都会造成相应的弱化学习行为。所以,对于成功的机器学习系统来讲,强化学习能力不容忽视,因为它们能发展出直觉和识别能力,而不只是按照程序员编好的程序工作。

信息技术领域从来不缺乏流行词,从IT到DT,从云计算到框计算,从数据库到数据湖,从弱AI到强AI,从机器学习到机器智能…一堆眼花缭乱的技术名词,让人云里雾里。当谈及AI时,更是这样,有人工智能,也有机器学习;有机器学习,还有神经网络和深度学习;有感知计算,还有认知计算;还有机器视觉、机器人、自然语言、符号逻辑等若干概念和技术方向。我们先不用纠结这些繁杂的技术术语和概念,这些知识在任何一个搜索引擎或者AI教材书籍上都能查到,重要的是抓住关键矛盾,理清其逻辑联系。为了界定人工智能,我们首先要理解什么叫智能?智能通常可以被描述为感知信息的能力,并将其作为知识应用于环境的适应性行为,虽然还有很多关于智能的解释,但智能的本质基本上都涉及学习、理解以及为了解决实际问题而对学到的知识加以应用。智能至少包括三个方面的能力:理解、分析、解决问题的能力;归纳、演绎推理能力;自适应生存和发展能力,而这三方面的能力都离不开学习。这也是我们前文着重强调机器学习这一关键AI技术的原因,当然传统的符号逻辑构建的规则式AI系统也能一定程度上进行计算和推理,但他的学习是人类知识的嵌入式设计和灌输,机器本身并无自学习能力。

也没有人类告诉它猫应该长成什么模样,涵盖机器学习、深度学习和强化学习。未来多种学习方式的深度交叉融合,将极大推进深度学习的应用价值特别是人工智能的突破。机器的情感、记忆推理等高级智能,将会由基于深度特征学习和加装存储记忆、推理模块的迁移学习、强化学习、对抗学习等各种学习方式的交叉融合而实现,未来的机器学习方式可能远不只这几种,其本质都是在模仿人类的学习方式。迁移学习代表了我们的进化过程,学习的举一反三、触类旁通,强化学习类似周伯通左右互搏,对抗学习完全是无师自通等,以深度学习为主线的技术栈极大地拓展了机器学习能力。

简单来讲,人工智能是指一套广泛的方法,算法和技术,可以使机器或系统看起来像人一样聪明,人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。人工智能最具代表性的解决方案包括IBM的沃森(Watson),苹果的Siri,谷歌的AlphaGo,还有亚马逊的Alexa等等。一句话,人工智能可以理解为模拟人类智能的软硬件系统。要做到这一点,AI首先需要能感知信息,并确定哪些信息有用;其次要能学习到相关特征和制定出问题解决的规则;最后AI要能调整优化自己,升级迭代智能水平。根据上述理解,AI不仅是分析数据,还要能解释数据,不仅是获取洞察和理解规则,还要能进行预测,最重要是能通过学习来提高自己!

图片 15图6 机器学习分类地图

一般来讲,传统的符号逻辑方法及一般的统计机器学习方法以科学运算、逻辑处理、统计分析和规则式AI、专家系统等为核心,很难称得上智能,人工智能要真正走向智能,需要从如下三个层次进行突破(如图3):

通用AI之路任重道远,无监督学习是最后一座待突破的堡垒。大家都知道深度神经网络有如此神效,但具体的网络参数为什么能够表现出智能恐怕无人知晓?人的大脑分两个部分。一部分负责产生意识。一部分负责记忆、运算。深度学习算法模拟的是后者。但对于前者,人类还一无所知,类脑与神经计算科学可以说还没有真正入门,另外无监督学习能力才是真正智能诞生的基础。这方面的进展还不容乐观,深度学习四大金刚之一LeCun对AlphaGo的评价可见一斑。

图片 16

图片 17

图3 人工智能的三个层次

LeCun说到:“绝大多数人类和动物的学习方式是非监督学习。如果智能是个蛋糕,非监督学习才是蛋糕主体,监督学习只能说是蛋糕上的糖霜奶油,而强化学习只是蛋糕上点缀的樱桃。现在我们知道如何制作“糖霜奶油”和上面的“樱桃”, 但并不知道如何制作蛋糕主体。我们必须先解决关于非监督学习的问题,才能开始考虑如何做出一个真正的AI。这还仅仅是我们所知的难题之一。更何况那些我们未知的难题呢?”正如LeCun所说,未来解码人类学习方式的重大突破性技术,很可能会由无监督学习来完成,因为无监督才是人类和动物学习的关键模式,婴幼儿通过少量有监督学习训练之后,在后续几十年的成长过程中,能够观察并发现世界的内在结构和获得经验知识,都是一种无监督的自发主动的学习模式,而不是像小时候被父母告知每项事物的名称和意义。而AlphaGo的核心技术采用了监督学习和强化学习,强化学习离无监督学习能力还很远,所以说对于完全无监督学习这个AI堡垒来讲,阿尔法狗应该说还在门口摸索,但无疑现阶段的进步也是十分巨大的。

(1)计算智能:计算智能(Computing Intelligence)的概念由IEEE神经网络学会于1990年提出,通常是指计算机从数据或实验观察中学习特定任务的能力,计算智能是借鉴自然进化等计算方法(如仿生类算法:遗传算法、蚁群算法、DNA计算等,还有如神经网络算法,这些算法也可以看作是数据挖掘,机器学习和人工智能部分支撑技术)以解决复杂的问题。这种方法接近于人的推理方式,即使用不精确和不完整的知识,并能够以自适应的方式产生控制行为,比如使计算机能够理解自然语言的模糊逻辑,使系统通过像生物一样学习数据中的经验和模式。

5.弱AI到强AI的生产力变革

(2)感知智能:感知智能就是要使机器具有视觉、听觉、触觉等感知能力。这离不开机器学习,所有机器学习方法都是关于从数据中识别出趋势,或者识别数据所适用的类别,以便在提供新的数据时,可以做出适当的预测旨。通过这种学习方式,能初步让机器“看”懂与“听”懂,并据此辅助人类高效地完成如图像识别、语音识别、语言翻译等工作。近年来,以深度学习为核心的机器学习方法取得重大突破和进展,使得机器的感知智能水平正在逐步接近或超过人类,AI当前的研究应用水平就处于这一阶段。

李开复曾提到硅谷近几年的一个趋势:“做深度学习的人工智能博士生,一毕业就能拿到200到300万美金的年收入的offer,这是有史以来没有发生过的”。与之相比的是,美国大学生的平均终生薪金收入是230万美金,而高中毕业生的平均终生薪金收入是130万美金,深度学习博士一年的收入是普通大学生一生的收入,可见各大科技巨头在深度学习和人工智能这个领域押下了多重的筹码,难道就不怕打水漂麽?其实是在赌一个关键节点,所谓的风口技术,我们从人类社会的发展来看,经历了农耕时代、工业时代、电气时代和当今的网络时代,现在正是跨越智能时代的关键技术节点,很大程度上就看深度学习等关键AI技术能否担当得起如蒸汽机、电灯和互联网这样重大的历史性变革技术使命。深度学习能否使机器学习更标准、更易用、更智能,同时通过数据驱动来降低机器学习技术的应用门槛,这是AI技术普及的必须条件,所以科技巨头们必须押重注争抢这一技术至高点。种种迹象表明以深度学习为代表的新型机器学习技术体系有望担此重任。

(3)认知智能:相比感知,认知智能更进一步,能初步掌握人类一样的理解、情感和交互能力。旨在让机器学会主动思考、决策及行动,以实现全面辅助或替代人类工作。认知智能具有自适应性,及能随着目标和需求进行自适应变化;交互性,能与外部参与者进行流畅互动和交流;迭代性,能通过反馈、记忆等升级优化自己的能力;最后一点要有对环境的理解能力,比如初步认识和理解所出的世界,对语言交流的环境理解等等。要实现认知智能绝非易事,必须解决机器非监督学习问题,技术难度很大,长期以来进展缓慢。认知智能也会用到各种机器学习技术,但只要机器学习方法是不够的,如何实现记忆、情感和复杂知识推理等,要么需要终极算法的支持,要么是集成多个高级AI子系统的一整套架构协同工作。在这个层面,AI的研究还处于相当初级的水平。

当然,AI目前的发展还处于弱AI(Artificial Narrow Intelligence ,ANI)阶段,如阿尔法狗一样只擅长某一方面的人工智能。这个阶段的AI是人类的好助手,就像电视、汽车、电脑一样为我们所用,提高我们的工作效率,如工业机器人、医疗机器人、智能问答、自动驾驶、疾病诊断、自动交易、智能终端等工具,极大提高了信息社会的生产力。而强人工智能(Artificial General Intelligence ,AGI)将在各方面相当于人类或者超过人类,也称为通用人工智能,谷歌做AlphaGo的终极目标在于此。越是强大的技术,其自身发展的速度也是无法想象的,当谷歌的自动驾驶狗(已行驶超200万公里)、医疗狗(DeepMind各种疾病诊断AI已初现身手)、翻译狗(谷歌几十种语言的自动翻译)、军事狗(Boston Dynamic机器人)、金融狗…等各种狗连成一片的时候,工业机器人一定会走出牢笼,变身各种机器助手进入到你的家里和办公室里,而狗的服务端则会像电力一样提供源源不断的智能服务,强AI时代也就成为现实了,当然这个发展过程可能存在极大变数,如何防止失控和垄断?这是马斯克创立OpenAI联盟的原因,不过好像联盟里的成员也都些能搞垄断的主,都是在花巨资建设自己的AI系统。

♦人工智能关键技术体系

图片 18图7 人工智能的生产力变革

如果说大数据技术是金字塔的地基和底座的话,那么AI技术就是金字塔的塔尖。从半个世纪以前人工智能的概念诞生以来,如何制造出智能机器,堪比造时光旅行机一样的魔力,吸引了数代研究人员的努力。迄今为止,积累了大量的基础性知识和相关学科技术。从人工智能产业链来看,AI技术体系包括基础性技术、机器智能技术及人工智能应用三个层面(如图4),其中基础性技术涉及广泛,除了基础的数据管理平台之外,主要包括经典AI方法和计算智能两个方面,经典AI涉及谓词逻辑、知识表示、确定性不确定性推理、专家系统等方法,经典AI方法也有人称之为符号智能,是以知识为基础,通过构建规则关系和逻辑推理来解决相关问题。这种思想认为人脑的思维活动可以通过一系列公式和规则来定义,从某种程度上讲,导致了经典AI研究进展缓慢。从早期的计算智能研究角度看,当时传统的机器学习方法,如贝叶斯网络、支持向量机、决策树等统计概率方法和进化计算方法(如人工神经网络、遗传计算、群智能计算等)也被视为AI的基础性支撑技术。

人工智能的发展速度只会越来越快,IBM的watson在有足够病例和病理知识的输入下,其对一般病症的判定准确率能高于初级医生,换句话说,它可以替代美国大多数社区医院的医生,其在律师行业也能作为助理律师处理一般性事务。比沃森智商高很多的AlphaGo发展空间更大,游戏AI,围棋AI,医疗AI,金融AI…AlphaGo架构的通用化和横向扩展并不难,深度学习、神经网络、强化学习、MCTS和GPU计算等都是通用的技术,AlphaGo的成功验证了这些技术组合的高效性和可扩展性。向其它领域扩展,核心技术和算法都是相通的,只是数据不同,服务载体和表现形式不同而已。面对各领域的智能化变革,在不远的将来,人造劳动者正在从各个领域汹涌而来,大部分蓝领或白领工作都将被取代,飞行员、司机,流水线工人,客服,翻译,医生甚至教师。唯一的变数在于艺术、创造和沟通,虽然机器现在也能作诗和画画了,但是否能够超越人类,还没有定论。

图片 19

6.结论与展望

图4 人工智能技术与应用

当阿尔法狗这样成长速度远超人类的智能系统,在各行各业全面开花的时候,对我们生活造成的冲击无疑是巨大的,会提高生产力,抢我们的饭碗,甚至提高整个文明的智慧水平。那很多人可能会问,“猫狗”们能产生自我意识吗?我想这个问题是决定人类命运的关键,也是如何与强AI和谐相处的关键。马斯克(Elon Musk)、盖茨和霍金都曾提出关于人工智能失控的问题,霍金称人工智能会威胁奴役人类,马斯克认为人工智能是在“召唤魔鬼”,担忧未来人工智能可能会被用于邪恶,甚至会诞生《终结者》里的“天网”系统毁灭人类。

从最近几年深度学习的跳跃式发展,来重新审视人工智能技术的话,传统AI方法的瓶颈凸显。真正的机器智能首先要解决感知的问题,而在基础性AI技术成熟之后,借助大数据资源,通过大规模数据的机器学习或深度学习、强化学习、迁移学习,我们离真正意义上的感知智能才越来越近。比如语音识别、图像识别、自然语音处理、场景识别和生物识别等领域的初步应用。认知智能由于技术的复杂性估计短时间内难以突破,现阶段还无从谈起,即使有限的感知也是靠数据的喂养,后续章节我们再来详细讨论这一问题。不过,当前这一波AI热潮带动的深度智能应用正在向纵深发展,除了语音识别和自然语言(处理,生成和理解)应用之外,还包括大部分目标识别任务,如模式,文本,音频,图像,视频,面部等方面,另外在自动驾驶,医疗诊断,搜索引擎,打击犯罪,市场营销,机器人等相关领域的落地应用都有望突破。

早在1950年,图灵的论文《计算机器与智能》(Computing Machinery and Intelligence)开篇就说到:“我提议思考这样一个问题,机器能思考吗?”,并提出了最著名的图灵测试方法。直到现在,实现图灵测试还是遥遥无期,短期来看,AI要产生自我意识很难,毕竟连自然语言处理的很多问题都还没有解决,当AI能像人类一样流畅地、富有逻辑和情感地听、说、读、写之后,再谈自我意识可能会靠谱一些。不过任何事物的发展也有个例外,当网络规模巨大、连接复杂到一定程度之后,会否产生一些变异或进化?只有科技巨头们自家的机器农场才知道,一般的研究机构因少有海量的数据资源和计算能力也就无从知晓了,毕竟我们连深度神经网络为何有如此神效都不知道,超大规模的神经网络参数调节为什么能够表现出超强的识别和学习能力?更不知道,对人类来讲,这个问题就像理解我们自己的大脑一样难。当然,正如哈萨比斯所说,信息过载和冗余是大数据时代我们面临的首要问题,我们希望能利用AI找到元解决方案,人工智能可以帮助我们更好地探索人脑的奥秘。

未完待续…

总之,汽车淘汰马车,电灯淘汰油灯,电脑淘汰人脑,这些个历史进程是无法改变的,我们的变革周期在加速,工作的变化也会越来越快,也许就在你觉得自己通过挑灯充电走在前面的时候,其实你掌握的技能已经处于被淘汰的边缘。如果有奇点的话,现在就正处于加速收敛的阶段,量变到质变的前夜,强人工智能将深刻改变我们生活,也会给我们带来巨大挑战。阿尔法狗的彻底胜利在昭示着AI的觉醒,强AI的诞生对于人类而言仍是吉凶莫测,一边是《星际迷航》,一边是《终结者》,路掌握在我们自己手中。

来源:点金大数据     作者:杜圣东

本文由澳门新葡亰平台游戏发布于新闻资讯,转载请注明出处:也没有人类告诉它猫应该长成什么模样,涵盖机

关键词:

最火资讯